
Modular Exponentiation and Solving Modular Equations

1 Euler’s Totient Function
The Euler’s Totient Function or Euler’s Phi Function, φ(n), counts how many integers in the range
[1, n − 1] are relatively prime to n. Two numbers are relatively prime if their gcd is equal to 1. This
function is especially important when we are performing modular exponentiation due to the following
theorem:

Euler’s Theorem. If a and n are relatively prime to each other than:

aφ(n) ≡ 1 (mod n)

The implication of this theorem is that for any integer k, let r = k − k ∗ b k
φ(n)
c, then ak ≡

ar (mod n). This provides a quick way to evaluate modular exponents. Of course, this rely on the
ability to determine φ(n) efficiently. It turns out that there is a closed form formula to do so!

Theorem 1. Given an integer n, let n = pα1
1 p

α2
2 ...p

αk
k be its prime factorization. Then:

φ(n) = (p1 − 1)pα1−1
1 (p2 − 1)pα2−1

2 ...(pk − 1)pαk−1
k = n(1− 1

p1

)(1− 1

p2

)...(1− 1

pk
)

This theorem can be proven inductively based on the observations that φ(p) = p−1 for any prime
p and φ(ab) = φ(a)φ(b) if a and b are relatively prime. Note that Euler’s theorem is the generalized
version of the more well known Fermat’s Little Theorem, which states that if p is a prime and a an
integer that is relatively prime to p, then ap−1 ≡ 1 (mod p).

2 Rabin-Miller Primality Testing
Here, we will discuss a probabilistic algorithm to test primality. First, the algorithm is probabilistic
because it may not always return the right answer. More specifically, if the algorithm report n is a
composite number, than it is guaranteed that n is not prime. However, when the algorithm report n
is prime, it is now always the case that n will be prime. It may be tempting to discard an erroneous
algorithm like this, but research has shown that the probability of falsely reporting n is a prime when
it’s not is very long. Thus, in practice, we simply run the test many times. If at any point, the algorithm
reported n is composite, then we are done. Otherwise, we can be fairly sure n is a prime.

Let us investigate how the algorithm work. First, it relies on the following fact:

Theorem 2. Let p be a prime. Then the equation x2 ≡ 1 (mod p) has only two solutions: x ≡
1 (mod p) and x ≡ −1 (mod p)

Now, we will suppose the p is an odd prime. Then we can write p−1 = 2s∗d for some integer s, d.
Let us randomly choose an integer a < p. By Fermat’s Little Theorem, we know ap−1 ≡ 1 (mod p).
By above theorem, this means that a2s−1d ≡ ±1 (mod p). If a2s−1d ≡ 1 (mod p), then we can apply
the previous theorem again to yield that a2s−2d ≡ ±1 (mod p). Otherwise, a2s−1d ≡ −1 (mod p).
Following a similar argument, it then follows that either there exists an integer 0 ≤ r < s such that
a2rd ≡ −1 (mod p) or a20d ≡ 1 (mod p).

The Rabin-Miller Test make uses of the contrapositive of the above observation. Suppose we are
given an odd integer n and we want to test its primality. If it is composite, then there exists an integer
a in which a2rd 6≡ −1 (mod p),∀0 ≤ r < s and a20d 6≡ 1 (mod p). In this case, we call a the witness
for the compositeness of n.

However, there are no known ”good” method of finding witness, so what the algorithm does
instead is randomly use an integer from the range between 1 and n − 1. Furthermore, just because
we have found an a such that there exists an integer 0 ≤ r < s such that a2rd ≡ −1 (mod p) or
a20d ≡ 1 (mod p) doesn’t prove that n is a prime. An example of this (taken from wikipedia) is
n = 221, a = 174.

bool R a b i n M i l l e r (i n t p) {
randomly choose an a < p ;
f a c t o r (p−1) = 2ˆ s ∗d ;
x = a ˆ d % p ;
i f (x == 1) re turn true ;
f o r (i n t i = 0 ; i < s ; ++ i) {

i f (x == p−1) re turn true ;
x = (x∗x % p) ;

}
re turn f a l s e ;

}

3 Solving ax ≡ b (mod n)
Let us consider how to solve the eqution ax ≡ b (mod n) given a, b, and n. First, let us assume
(a, n) = 1. Recall from last class that we can used the extended gcd algorithm to find two integers
s, t such that as + nt = 1. This implies that as ≡ 1 (mod n) (we call s the inverse of a mod n).
Now, if we multiply both side of the equation by s, we get axs ≡ (as)x ≡ x ≡ bs (mod n). Thus, the
solution we are looking for is x ≡ bs (mod n)!

Now what if a and n are not relatively prime? Let g = (a, n). Suppose g - b, then there is no
solution in this case. To see this, note that if such a solution does exists, then by definition, we have
n|(ax− b), which implies (ax− b) = nk for some integer k. Now, rearranging the equation, we get
ax− nk = b. However, the left hand side of the equation is divisible by g while the right hand side is
not! Thus, we have found a contradiction.

So the only case left is when g | b. Since b divisible by g, let us write b = gk. Again, let us use
the extended gcd algorithm to find two integers s, t such that as + nt = g. Multiplying both side by
s, we get axs ≡ (as)x ≡ gx ≡ bs ≡ g(ks) (mod n). So we reach the equation gx ≡ g(ks) (mod n).
While it may look tempting to cancel out the g on both side of the equation to get x ≡ ks (mod n), we
cannot do so. Instead, based on a fundamental number theory result, the above equation is equivalent
to x ≡ ks (mod n

g
). It is important to note that we are now taking the mod of a new number!

4 Chinese Remainder Theorem
In the previous section, we showed how to reduce an arbitrary equation of the form ax ≡ b (mod n)
to the form x ≡ y (mod n′). Let us now investigate how to solve a system of such equations. The

problem is as follows: we are given a1, a2, ..., am and n1, n2, ..., nm and we want to solve the system:

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

...
x ≡ am (mod nm)

The Chinese Remainder Theorem provides an algorithm to solve such as system. However,
note that it is not necessary to solve all m equations simultaneously into a single modular equation.
It suffices to combine two modular equations into an equivalent single modular equation. If we can
do that, then we can solve a system of m equation by first combining the first two equations, then
combine the result and the third equations, and so on. Thus, we will now reduce the problem down
into combining x ≡ a1 (mod n1) and x ≡ a2 (mod n2). The Chinese Remainder Theorem then says:

Chinese Remainder Theorem. Given a1, n1, a2, n2. Let g = (n1, n2) and s, t be integers such that
n1s+ n2t = g. Then a solution to the system of modular equations

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

exists iff a1 ≡ a2 (mod g). In this case, all solutions satisfy

x ≡ n1sb
a2

g
c+ n2tb

a1

g
c+ r (mod n1n2

g
)

where r = a1 − gba1

g
c = a2 − gba2

g
c (since a1 ≡ a2 (mod g)).

Before delving deeper into the puzzling expression above, I should remark first that this will
look different from the usual Chinese Remainder Theorem. This is because the Chinese Remainder
Theorem only handles the case that n1 and n2 are relatively prime to each other. This means that
g = 1 in the above expression, and the theorem simplifies down to the more familiar expression
x ≡ n1sa2 + n2ta1 (mod n1n2).

Here, however, I have given a more general expression that will handle the case (n1, n2) > 1.
Why does the formula work? We can rewrite x as

x = n1sb
a2

g
c+ n2tb

a1

g
c+ r + k

n1n2

g

for some integer k. Let us now evaluate what x (mod n1):

x ≡ 0 + (n2t)b
a1

g
c+ r + k

n1n2

g
(mod n1)

≡ g ∗ ba1

g
c+ (a1− ga1

g
) + 0 (mod n1)

≡ a1 (mod n1)

Similarly, we can double check that x ≡ a2 (mod n2).

